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Abstract—Previous studies have shown that an individual’s
subjective emotional evaluation involves cognitive processing that
tends to be different from the directly-measured affective-physio
signals, which creates a bias in the emotion labelings. Research
has shown that this bodily-physiological signals are shown to
be more related to the intended emotion elicitation type (-
Int), yet correlated less to an individual’s subjective emotion
feelings (-Sb). Hence in this work, we suggest that this intended
emotion elicitation status from the original stimuli (-Int) should
be incorporated as an explicit regularization in achieving a more
robust subjective emotion recognition system using physiology. To
be more specific, we propose a novel conditional tensor fusion
network in which the stimulation’s emotion type -Int is firstly
learned, then this learned intended annotation would then act as
an explicit conditional regularization toward the final subjective
emotion labeling. Our experiments indicate that this additional
regulation helps to improve the overall emotion recognition on
self-reported labels using physiology. We achieve an unweighted
recall of 69.8% using ECG-EDA multimodal fusion, which is
a relative improvement of 6.3% over the vanilla DNN method.
Further feature analysis shows that several descriptors from ECG
signals are indicative of the differences between these two emotion
annotation schemes.

I. INTRODUCTION

Automatic Emotion Recognition (AER) has seen a growing
interest from various domains for its wide potential appli-
cations. A person’s self-assessed emotion state (subjective,
denoted as -Sb) are often used as the ground truth label and
being recognized by computing a variety of expressive signals.
For example, pitch contours, energy component, and vocal
tract descriptors have all been demonstrated to carry high
modeling power in developing speech-based AER [1]. It has
been applied in applications of interactive agents [2] and psy-
chological disease detection [3]. On the other hand, the Facial
action coding system (FACS), i.e., computed based on facial
muscle movement, has long been utilized as inputs to advance
emotion recognition from face [4]. Recently, the advancement
of miniaturized sensors and ubiquitous computing techniques
have enabled the just-in-time bodily signal monitoring. These
physiological measures is a more intrinsic bio-indicator, i.e.,
compared to face or speech modality, revealing activation
of the autonomic and somatic nervous system (ANS and
SNS), which has been shown to be closely related to emotion
fluctuation [5]. This non-invasive and easy-to-use property also

draws increasing interest in developing AER systems using
physiological signals.

To develop a physiological AER system using machine
learning approaches, many datasets have been collected under
a similar setup [6]–[9]: during the experiment, a set of pre-
selected affect-rich multimedia materials (usually video clips)
are expected to elicit intended emotion states (-Int) as they
being delivered to the receiving participants. Meanwhile, the
participant’s physiological signals are collected simultaneously
as they watch these video stimuli. After each stimuli session,
the participants are asked to describe how do they feel about
themselves and report their own subjective emotion states (-
Sb). This subjective self-reported emotion states have been
used extensively as labels when learning to recognize emotion
from physiology [10], [11].

However, obtaining high accuracy in recognizing one’s
own subjective emotion states (-Sb) remains challenging.
It is largely due to the mechanism of self-reporting one’s
emotional states that can be quite complex as it involves
layers of cognitive assessment beyond spontaneous emotional
responses. An emotional experience is a psychophysiological
process triggered by conscious and/or unconscious stimuli, and
the formation of internal emotion is a result of a complex
interaction between individual perceptual status and their
bodily responses [12], [13]. In other words, one’s self-reported
emotional feelings could be biased by emotion-irrelevant
physiological status and even other confounding factors that
may be oriented toward what should be felt instead of what
has been felt. Second, the occurrences of emotion may be
completely neglected. In Ivonin’s study [14], the idea of an
unconscious mental process has been proposed. Specific types
of implicit emotional elicitation may be ignored during self-
evaluation procedures while showing a significant influence in
affecting a subject’s physiological responses. Yang’s [15] study
also suggests that stimulated physiological signals are more
correlated with stimuli’ affective status than self-disclosed
emotion labels. All these researches suggest that subjective
emotional state is rather complicated by its nature and it
would usually lead to unsatisfying modeling especially using
physiology solely.

Several methods have been proposed to enhance physiology
AER using self-reported labels. For example, in Li’s et al.
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Fig. 1. Data distribution of each labeling method. Due to poor data quality or
missing labels, there are 629 samples left for each labeling scheme.

study [16], the Hjorth parameter of mobility from EEG signals
has been extracted as a key indicator describing emotion
status. Shukla et al. also present a comprehensive study on
calculating EDA features for AER [17]. Besides, personality
attributes have started to be taken into consideration toward
a more robust self-reported AER using physiology [18], [19].
However, while these methods improve recognition by tak-
ing advantage of fusing external information or sophisticated
feature engineering, they usually neglect the fact that these
measured bodily signals are in fact originally triggered by the
affective stimuli (-Int). In other words, these signals would
contain emotional responses from both emotion appraisal (-
Sb) and the direct and intended emotion stimuli (-Int). Hence
in this research, we propose that by explicitly constraint the
-Int into the network learning, it would mimic the process of
self emotion appraisal and improve the challenging subjective
emotion recognition by learning a better representation. To be
more specific, we propose a Conditional Polynomial Fusion
Network (CPFN) which the automatically predicted stimuli’
emotion label (-Int) is applied as explicitly conditional regu-
lation for predicting the subjective emotion feelings (-Sb). We
validate our proposed model on a large physiological emotion
recognition dataset [9]. Our experiments show that this latent
control prevents the potential self emotion cognitive bias and
result in a more robust subjective AER system. We achieve
an unweighted recall of 69.8% using ECG-EDA multimodal
fusion, which is a relative improvement of 6.3% over the
vanilla DNN method.

The rest of the paper is organized as follows: section
II details the database and the computational methodology,
section III reports the recognition results and illustrates po-
tential feature discrepancy under different emotion annotation
scheme. Finally, section IV concludes our findings and points
out potential future directions.

II. RESEARCH METHODOLOGY

A. AMIGOS Dataset

In this study, we conduct our study on a large public
physiological dataset AMIGOS [9]. In this dataset, 16 emo-
tional videos with intended emotional stimuli (annotated with

Fig. 2. Our proposed CPFN architecture. Note that each dense block is
concatenated by a linear model, a Leaky-Relu as activation function, and
a dropout layer.

high/low arousal or valence, -Int) were delivered as multimedia
elicitation to arouse the participants’ affective responses. A
total of 40 participants aged between 21 and 40 (mean age
28.3) were recruited to self-disclose their subjective feelings
(-Sb) at the end of each video, while their physiological
responses (ECG, EDA, and EEG) were recorded with bio-
sensors throughout the time. We binarize this subjective emo-
tion rating using the mean of each participant’s rating as
previously done in [15]. Fig.1 demonstrates the detailed label
distributions.

B. Computational Framework

To evaluate the subjective emotion recognition conditional
on the intended stimuli, we perform a binary emotion classi-
fication task using physiological features as our experimental
setting. The detailed processes are described below.

1) Physiological Low-Level Descriptors (LLDs): We first
apply a low-pass filter cut-off at 60Hz on ECG and EDA
signals for noise reduction. Then, several standard Heart
Rate Variabilities (HRVs) in time and frequency domain are
calculated which has been studied as an important marker of
autonomic nervous system (ANS) modulation [20]. As for
EDA data, we fetch the tonic and phasic component which
has previously shown as an important measure linking the
physiological status toward affective responses [21]. Finally,
EEG features like “Hjorth” and “ARMPB” parameters which
have been studied and known as key emotion indicators [22]
were also extracted to represent emotional brain activities. The
exact features and dimensions are listed in Table I, and we use
the open-source toolkit [23] for feature extraction. A subject-
wise z-normalization is then applied to each feature dimension
to mitigate the issue of individual differences.
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TABLE I
AN OVERVIEW OF PHYSIOLOGICAL LOW-LEVEL DESCRIPTORS

EXTRACTED FROM [23]. “F*” INDICATES 15 STATISTICAL FUNCTIONS1.

Modality Low-Level Descriptors

ECG(51)

RMSSD, meanNN, sdNN, cvNN, CVSD, medianNN,
madNN, mcvNN, pNN50, pNN20, Triang, Shannon h,
ULF, VLF, LF, HF, VHF, Total Power, LFn,HFn,
LF/HF, LF/P, HF/P, DFA 1, DFA 2, Shannon, FD Higushi

EDA(68) F*SCR Onsets, F*SCR Peaks Amplitudes,
F*EDA Phasic, F*EDA Tonic

EEG(378)
Hjorth, Kurtosis, Skewness, 1DiffMean, 1diffMax,
2DiffMean, 2DiffMax, SlopeMean, SlopeVar,
Wavelets, MaxPwelch, Entropy, AutoRegressiveParameters

2) Polynomial Tensor Pooling (PTP): Previous studies have
shown that tensor-based multimodal fusion could improve
the multimodal emotion recognition [24], [25]. Hence in this
study, we utilize the novel polynomial tensor pooling block
[26] for multimodal physiological signal integration. We first
concatenate M modality features into a din-dimensional long
vector x :

xT = [1, xT
1 , x

T
2 , ...x

T
M ] (1)

Here, a low-rank tensor network factor Wf with dimension
[din, drank, dout] is multiplied to approximate the original
polynomial multiplication with tensor factorization trick [27],
preventing the dimension explosion due to the outer product
operation:

x̃ = xT ×Wf (2)

where the dimension of x̃ is [drank, dout]. And then the
element-wise multiplication within x̃ would equivalent toward
the p-th order polynomial outer products:

x̃p = x̃ ∗ x̃ ∗ ...x̃︸ ︷︷ ︸
p

(3)

Finally, the higher-order multimodal fusion embedding z is
calculated by weight matrix Wr with shape [1, drank] and bias
br [1, dout]:

zT = Wr × x̃p + br (4)

This embedding would be regarded as the super encoding
vector from multi-view physiological signals and would be
further forward toward two separated dense layers F1,F2.

3) Multilinear Conditioning: To properly model subjective
emotion states while preventing latent cognitive bias from
bodily signals, we integrate the intended emotion label -
Int as explicit control when predicting subjective labels -Sb.
Inspired from the idea of conditional modelings [28], [29], the
subjective label -Sb could be reparameterized conditioned on
the prediction of -Int:

ỹInt = F1(z)

ỹSb = F2(z × yint)
(5)

1max, min, mean, median, std, skewness, kurtosis, min position, max posi-
tion, 25 percentile, 75 percentile, 75 percentile-25 percentile, 1 percentile,
99 percentile, 99 percentile-1 percentile

Finally, the entire Conditional Polynomial Fusion Net-work
(CPFN) would be optimized in an end-to-end manner with
additional entropy H(ỹInt) as confidence level of ỹInt:

H(ỹInt) =

C∑
c=1

ỹInt log ỹInt

λ(ỹInt) = 1 + e−H(ỹInt)

min
Wf ,Wr,br,F1,F2

L(F1(z), y
Int) + λ(ỹInt)L(F2(z, ỹ

Int), ySb)

(6)
where L states for the standard cross-entropy loss.

III. EXPERIMENT SETUP AND RESULTS

A. Experiment Setup

The exact architecture of our Conditional Polynomial Fu-
sion Network includes several blocks of networks. Several
hyperparameters were grid-searched: learning rate among
[0.005, 0.001], polynomial order between [1, 2], and tensor
rank dimension drank among [1, 4, 8]. Batch size is fixed as
16 and dropout rate at 0.2, the max epoch is 150 with early-
stopping, and the optimizer is Adam. To prevent overfitting,
we carry out all experiments under a subject independent 10-
fold cross-validation setup. The final evaluation metric used is
the unweighted average recall (UAR).

1) Comparison Models: We first conduct our experiments
utilizing linear SVM and vanilla DNN without consideration
of -Int. Then we compare results among the following models
to validate our idea of multi-annotation conditional control:

• MTL-DNN: Multitask Learning Dnn. Multitask learning
has been studied as learning multiple tasks simulta-
neously expecting knowledge transfer among a variety
of tasks [30]. Here we applied the simple two-stream
architecture in predicting both -Int and -Sb. We consider
it as a naive method to investigate the potential effect
of multi-annotation joint learning. Since we specifically
focus on the latent conditional property from -Int toward
-Sb, other MTL architectures would not be discussed in
this work.

• PFN: Polynomial Fusion Network. Modalities are fused
using the polynomial tensor factorization technique de-
picted in II-B2. Noted that we apply the same technique
under a single modality scenario which we regard it as
intra-modality fusion among LLD dimensions.

• CPFN: Our proposed Conditional Polynomial Fusion
Network. An enhanced subjective emotion recognition
system integrating conditional control of learned intended
stimuli emotion level -Int.

B. Subjective Emotion Recognition Results

Table II summarizes our emotion recognition results. Our
proposed CPFN reaches the highest subjective emotion recog-
nition across almost all ECG and EDA related modalities. Sev-
eral notable observations can be summarized. Firstly, through
the SVM and DNN experiments, we could see that Valence
is more better modeled than Arousal in either ECG, EDA, or
EEG modalities. Comparing to Valence, there is around 5%

��������	
���������		����������	���	����	������ �����������������������	�� �!"����	�

#��

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on August 05,2021 at 01:18:12 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
A SUMMARY OF SUBJECTIVE EMOTION RECOGNITION (-SB) RESULTS. THE BOLD ONE WOULD BE A SINGLE MODALITY’S MAXIMUM WHILE * IS THE

GLOBAL MAXIMUM. THE CHANCE UAR IS 0.5.

Arousal Valence
ECG EDA EEG ECG-EDA ECG-EEG EDA-EEG ECG EDA EEG ECG-EDA ECG-EEG EDA-EEG

SVM 0.542 0.559 0.543 0.476 0.478 0.495 0.558 0.597 0.639 0.537 0.586 0.597
DNN 0.53 0.576 0.562 0.565 0.562 0.578 0.588 0.629 0.597 0.635 0.608 0.629

MTL-DNN 0.556 0.592 0.584 0.593 0.579 0.585 0.607 0.643 0.61 0.66 0.621 0.654
PFN 0.548 0.587 0.582 0.603* 0.585 0.596 0.622 0.648 0.624 0.658 0.63 0.653

MTL-PFN 0.562 0.586 0.584 0.592 0.58 0.588 0.624 0.64 0.623 0.676 0.625 0.658
CPFN 0.565 0.6 0.591 0.601 0.572 0.596 0.631 0.655 0.62 0.698* 0.623 0.645

TABLE III
FEATURES INDICATIVE TO DIFFERENCE BETWEEN TWO EMOTION

ANNOTATION SCHEMES -Int AND -Sb. CCSQ: CARDIAC CYCLES SIGNAL
QUALITY, LF/P: POWER RATIO BETWEEN LOW FREQUENCY AND TOTAL
POWER, VLF: POWER OF VERY LOW FREQUENCY, NN MEAN: MEAN OF

RR-INTERVALS

Modality Arousal Valence

ECG

CCSQ low quar (1.972, p=0.049)
CCSQ std (-2.045, p=0.041)
LF/P (-2.393, p=0.017)
VLF (2.124, p=0.0343)

CCSQ min (-2.092, p=0.04)
NN mean (-2.082, p=0.04)

EDA - -

drop while using physiology for modeling Arousal. Further
experiments on MTL-DNN method confirms our hypothesis
that the joint modeling using both -Sb and -Int emotion
annotation scheme could improve the recognition of subjective
emotion labeling. We would put more emphasis on Valence
recognition in the following section.

We observe that the integration of the polynomial fusion
block (PFN) into the model could boost the recognition of
ECG and EDA, which is an improvement of around 3%
in both single and dual modalities scenario. On the other
hand, there are no observable changes in EEG signals. Then
similar to the MTL-DNN method, the MTL-PFN model could
also help the prediction of -Sb, especially in the ECG-EDA
fusion scenario. Lastly, multilinear conditional control en-
hances the model capability. During the conditional modeling
from pseudo--Int toward -Sb, the outer product operation
act as a reparameterization trick toward the original learned
physiological hidden features. We believe this step would
mimic the process of self emotion appraisal by introducing
additional prior knowledge that ”WHICH” intended emotion
elicitation is being delivered, and force the -Sb branch model to
learn a constrained (better targeted) representation under this
controlling mechanism. Comparing to the naive DNN method,
our proposed architecture reaches a relative improvement of
4.3%, 2.6%, and 6.3% respectively on ECG, EDA, and ECG-
EDA modalities respectively.

C. Feature Discrepancy Analysis

In this section, we conduct statistical tests to examine
the discrepancy of emotionally-informative physiological de-
scriptors under two different annotation -Int and -Sb. We

specifically run the tests on ECG-EDA modality due to its
modeling power in achieving a higher emotion recognition
rates. We first split the entire dataset into two groups according
to whether the sample’s -Int and -Sb are the same or different.
By applying the two-tailed Student’s t-test, we summarize
statistically sensitive features (p− value < 0.05) toward two
different annotation schemes in table III. From this table,
first, we could quickly notice that there are no EDA features
selected. This implies that comparing with EDA data, people
may somehow more likely to reveal through ECG variations
when they are experiencing a certain level of emotion appraisal
bias (i.e., -Int not equals to -Sb). This may also explain the
reason that when comparing MTL models to our proposed
CPFN, the additional information from -Int usually helps
improve the recognition more on ECG related modalities.
Finally, it is surprising to see that some of the ECG quality
features are quite sensitive toward the differences between
the emotion labels. We hypothesize that when people are
under a certain level of emotional cognitive difficulties, this
“confusion” status could potentially be reflected in this special
ECG feature. However, it would require further specifically
designed experiments to investigate the potential underlying
mechanism.

IV. CONCLUSION

Previous studies have shown that the bias between phys-
iological features and the self-assessed emotion annotations
could degrade the automatic emotion recognition system of
self-reported emotion feeling. This bias could result from
either intended emotion elicitation or unconscious emotion
process, which results in a mismatch between the recorded
physiological responses and subjective emotional feelings.
Hence in this work, we present a novel idea that the stimuli’
emotion level (-Int) should also be considered to mitigate
this mismatch. We propose a Conditional Polynomial Fusion
Network which incorporates additional emotion annotation
into joint modeling. In this model, the original multime-
dia stimuli’s intended emotion label -Int was firstly learned
from the recorded physiology. Then we explicitly apply this
automatically-learned stimulation’s emotion as a conditional
control when predicting the real subjective emotional feelings
-Sb. We consider it as a mechanism that we automatically learn
a prior knowledge describing the context when the emotion
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was triggered, then this prior information would be applied
to guide the prediction of the subjective emotion labels. Our
experiments show that by applying this conditional control, it
improves subjective emotion recognition results. To our best
knowledge, this is one of the first works that incorporate multi-
perspective emotion annotation schemes into physiological
emotion modeling. We can foresee several future directions.
Immediate work would be to design a new experimental
protocol to investigate the underlying mechanism of emotion-
appraisal bias. Besides physiological signals, other modalities
that may be used as an emotion indicator should re-investigate
the potential annotation discrepancy as well. Additionally,
other emotion annotation schemes such as Perceived-Emotion
should also be studied. By better understand the formation of
emotion from multiple points of view would help in advancing
a variety of human-centered multimedia applications [31],
[32].
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